The Zinc Transporter Slc30a8/ZnT8 Is Required in a Subpopulation of Pancreatic α-Cells for Hypoglycemia-induced Glucagon Secretion*

نویسندگان

  • Antonia Solomou
  • Gargi Meur
  • Elisa Bellomo
  • David J. Hodson
  • Alejandra Tomas
  • Stéphanie Migrenne Li
  • Erwann Philippe
  • Pedro L. Herrera
  • Christophe Magnan
  • Guy A. Rutter
چکیده

SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet β- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP(+): glucagon(+) cells from KO mice, revealed recombination in ∼ 30% of α-cells, of which ∼ 50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn(2+) levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca(2+) increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca(2+)-independent mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Over-expression of Slc30a8/ZnT8 selectively in the mouse α cell impairs glucagon release and responses to hypoglycemia

BACKGROUND The human SLC30A8 gene encodes the secretory granule-localised zinc transporter ZnT8 whose expression is chiefly restricted to the endocrine pancreas. Single nucleotide polymorphisms (SNPs) in the human SLC30A8 gene have been associated, through genome-wide studies, with altered type 2 diabetes risk. In addition to a role in the control of insulin release, recent studies involving ta...

متن کامل

Down-Regulation of ZnT8 Expression in INS-1 Rat Pancreatic Beta Cells Reduces Insulin Content and Glucose-Inducible Insulin Secretion

The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated ap...

متن کامل

In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.

Insulin-secreting pancreatic beta cells are exceptionally rich in zinc. In these cells, zinc is required for zinc-insulin crystallization within secretory vesicles. Secreted zinc has also been proposed to be a paracrine and autocrine modulator of glucagon and insulin secretion in pancreatic alpha and beta cells, respectively. However, little is known about the molecular mechanisms underlying zi...

متن کامل

Zinc and diabetes.

Zn2+ ions are essential for the normal processing and storage of insulin and altered pancreatic insulin content is associated with all forms of diabetes mellitus. Work of the past decade has identified variants in the human SLC30A8 gene, encoding the zinc transporter ZnT8 which is expressed highly selectively on the secretory granule of pancreatic islet β and α cells, as affecting the risk of T...

متن کامل

Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?

BACKGROUND Beta-cells are extremely rich in zinc and zinc homeostasis is regulated by zinc transporter proteins. beta-cells are sensitive to cytokines, interleukin-1beta (IL-1beta) has been associated with beta-cell dysfunction and -death in both type 1 and type 2 diabetes. This study explores the regulation of zinc transporters following cytokine exposure. METHODS The effects of cytokines IL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 290  شماره 

صفحات  -

تاریخ انتشار 2015